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Diffusion-weighted MRI brings new and complimentary information about the development

of the brain. It is also actively investigated how diffusion contrast properties correlates with

brain diseases. Though promising, this technique faces a number of technical challenges,

especially in fetal imaging, where unrestricted movement occurs. Despite the usage of fast

imaging sequences, the acquired images are still corrupted by motion artifacts, making them

hardly ready to use by doctors or researchers. Therefore, post image processing methods

are in great need to estimate the movement of the subject and to reconstruct high qual-

ity diffusion volumes for both clinical and research purposes, e.g., the study of fetal brain

connectivity.

This thesis firstly gives a background of diffusion and its mathematical models, diffusion

inside the brain and diffusion-weighted MRI. Then it introduces the source of the motion

artifacts in fetal MRI, and presents the current state-of-the-art method for its removal. After

that, a novel super-resolution reconstruction framework for recovering a higher order ODF

volume from motion scattered DWI image slices is proposed and experimentally compared

to the methods reported in the literature. Both human adult data and macaque fetal data

are used for evaluation. Finally, a structural connectivity study of the developing macaque
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fetal brains is carried out using unbiased template free brain parcellation schemes and graph

theory based analysis.
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Chapter 1

OVERVIEW

1.1 Background and Motivation

In recent years, there is increased research on diffusion-weighted Magnetic Resonance Imaging

(DW-MRI) to study both brain injury and brain growth. It provides an opportunity not only

for improved clinical research but also for basic neuroscience studies. [36, 24, 30, 23, 57, 16]

Although there has been a significant body of work on the brain studies for adults and

babies, applying DW-MRI on in-utero brain studies remains challenging. This is because

the uncontrollable fetal motion can severely corrupt the acquired images. Therefore, how to

effectively remove the motion artifacts and recover the uncorrupted diffusion volume have

constantly attracted attention. The recent development of methods to address fetal motion

in conventional structural MRI has led to the first large scale studies of tissue growth and

cortical folding in utero. [48, 50, 49] The development of comparable techniques for DW-MRI

promises to enable similar advances in the study of structural connectivity development in

the developing fetal brain.

1.2 Objective and Contribution

The objective of this thesis are to develop more advanced method for diffusion volume

reconstruction from fetal brain DW-MRI, as well as to study how the fetal brain structural

connectivity develops. There are two main contributions in this thesis. The 1st one is the

development of a robust super-resolution framework for higher order orientation distribution

function (ODF) reconstruction from motion scattered DWI slices, presented in Chapter 4.

The 2nd contribution is the structural connectivity study for the developing macaque fetal

brains using template-free parcellation schemes and small world graph analysis, presented in
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Chapter 5.

1.3 Organization

This thesis is structured with 6 chapters aiming to clearly explaining the content it contains.

• Chapter 1: This chapter presents the background, motivation, objectives and contri-

butions of this thesis.

• Chapter 2: This chapter gives a background of diffusion and its mathematical models,

diffusion inside the brain and the principle of DW-MRI.

• Chapter 3: This chapter introduces the motion artifacts in fetal brain MRI, and dis-

cusses the methodology for motion estimation of DW-MRI.

• Chapter 4: This chapter presents a novel super-resolution framework for robustly recon-

structing a higher order ODF volume from motion scattered DWI slices. Experimental

results are presented and discussed.

• Chapter 5: This chapter presents the connectivity study for the developing fetal

macaque brain using template free parcellation schemes and small world graph analysis.

• Chapter 6: This chapter summarizes this thesis.
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Chapter 2

DIFFUSION WEIGHTED IMAGING

This chapter aims to provide an introduction to the physics of diffusion, its typical math-

ematical models, diffusion inside the brain and the principles of diffusion-weighted MRI.

2.1 Principles of Diffusion

From the atomistic point of view, diffusion is considered as a result of the random walk of

the diffusing particles. [40] In molecular diffusion, the moving molecules are self-propelled

by thermal energy, which is known as Brownian motion. The concept of diffusion is typically

applied to any subject matter involving random walks in ensembles of individuals. The

diffusion process is different from bulk motion, where a collection of particles move in a same

direction under the influence of an external force. Instead, in the diffusion process each

particle moves in its own direction, and collisions happen frequently among particles as a

result.

2.1.1 Modelling Diffusion

The diffusion profile can be modeled in several mathematical ways, from simple to complex.

In this section, we present the two most common diffusion models, i.e., rank-2 tensor model

and spherical harmonic model.

Rank-2 Tensor Model

Rank-2 tensor model is the most widely used diffusion model. It allows to describe anisotropic

diffusion, which means that the diffusion can occur at different rates depending on the

directions. The directions are typically assumed orthogonal in space, and are usually called
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principle directions. The rank-2 tensor has a symmetric form:

D =




Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz


 (2.1)

By eigenvalue decomposition, D has the following form:

D = [v1, v2, v3]




λ1 0 0

0 λ2 0

0 0 λ3


 [v1, v2, v3]T (2.2)

where v1, v2, v3 are the eigenvectors as well as the principle directions, and λ1, λ2, λ3 are

eigenvalues as well as the diffusion strength or the diffusivities along the principle directions.

The symmetric nature of D leaves it with six degrees of freedom. In addition, D is positive

symmetric definite (PSD) as the eigenvalues must be positive (or strictly non-negative) due

to the physical constraint. Graphically, rank-2 tensor has an ellipsoid profile. Fig. 2.1

illustrates a few rank-2 tensors in their ellipsoid profiles associated with their matrix forms.

The diffusion strength along an arbitrary direction g can be retrieved by tensor projection:

D(g) = gTWg (2.3)

There are a number of metrics that can be directly obtained from the rank-2 tensor

model, in a form of combining the eigenvalues. [2] Here we list a few mostly common seen

metrics, of which Apparent Diffusion Constant (ADC) is defined as:

ADC =
λ1 + λ2 + λ3

3
(2.4)

It is straightforward that the ADC metric measures the overall diffusion strength along the

three principal diffusion directions.

The Fractional Anisotropy (FA) metric is defined as:

FA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

2(λ2
1 + λ2

2 + λ2
3)

(2.5)



www.manaraa.com

5

2
4

1 0 0
0 1 0
0 0 1

3
5

2
4

1
2 0 0
0 2 0
0 0 1

3
5

2
4

3 0 0
0 1

3 0
0 0 1

3
5

2
4

1 1
2 0

1
2 1 0
0 0 1

3
5
2
4

1 � 1
3 0

� 1
3 1 0

0 0 1

3
5

1, 1, 1 2, 1, 1
2 3, 1, 1

3
3
2 , 1, 1

2
4
3 , 1, 2

3

Figure 2.1: Examples of rank-2 tensor profiles in the 1st row and their associated matrix

forms in the 2nd row.

The FA metric measures the anisotropic property of the diffusion profile. It has a smallest

value of 0 for isotropic diffusion (i.e., λ1 = λ2 = λ3), and a highest value of 1 if the diffusion

takes place along only one principle direction (i.e., only one λ is non-zero). Therefore, the

FA value always varies between 0 to 1. The higher the FA value is, the more anisotropic the

diffusion is.

The rank-2 tensor model is sufficient in many application situations, however, its limita-

tion should be kept in mind. That is, the rank-2 tensor model can only model diffusion with

an ellipsoid profile, which is unfortunately too simple to model complex diffusion profiles.

Examples are shown in Fig. 2.2, where the non-ellipsoid profiles on the left can only be

approximated by rank-2 tensors on the right. From the figure, we find that if a diffusion

profile have more than one diffusion directions, the rank-2 tensor is unfortunately not able to

capture that information. This will inevitably cause problems in some applications, i.e., how

to distinguish crossing white matter tracts inside the brain, which is discussed in chapter 4.

Spherical Harmonic Model

To overcome the limitation of the rank-2 tensor model, spherical harmonic model is employed.

It consists of an infinite summation of real spherical harmonic (SH) basis functions of different
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Figure 2.2: Examples of non-ellipsoid profiles on the left are approximated by the rank-2

tensors on the right..

degrees. The diffusion strength along a direction g is computed by

D(g) =
∞∑

l=0

l∑

m=−l

wml Y
m
l (θ, φ) (2.6)

where Y m
l the real spherical harmonics basis functions with degree l and order m. θ and φ

are the angles in the angular coordinate system, which can be easily converted from g. The

profiles of some lower degree basis functions (l = 0, 1, 2, 3) are shown in Fig. 2.3 for better

understanding. With the spherical harmonic model, any arbitrary diffusion profile can be

described. However, computational complexity increases dramatically as with the degree

of the basis functions, therefore a reasonable upper limit for the degree number should be

properly chosen for practical applications. In addition, it is clear from the figure that only

basis functions with even degrees are antipodal symmetrical. Since the diffusion is antipodal

symmetric, only the spherical harmonic basis functions of even degrees should be employed

for modeling, i.e., l should be kept even.

2.1.2 Diffusion inside the Brain

The diffusion is not free therefore anisotropic inside the brain. An important factor for

anisotropic water diffusion is the hindrance of perpendicular water diffusion by the myelin

sheath encasing the axons. The numerous lipid bilayers of myelin have limited permeability

to water and are expected to hinder diffusion across the fibres, particularly the axonal water,
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Figure 2.3: Visualization of the profiles of the spherical harmonic basis functions of degree

from l = 0 to l = 3. Modified figure from [14], released into the public domain.

relative to the length of the axons where such barriers do not exist.[4, 5] It is also important

to keep in mind that a lot of other factors other than myelination can lead to diffusion

anisotropy inside the brain, such as cell membranes.

Diffusion MRI imaging happens at resolutions on the order of millimeters. The greatly

exceeds the size of neural structures which is on the order of microns. The aim of diffusion

imaging is therefore to image a microscopic process that occurs in micro-structures. This

causes inaccuracy if the micro-structures are not well ordered. However, we are lucky that

the brain is a highly ordered, in the sense that thousand of axons are running along each

other to form fiber tracts inside the white matter.

2.2 Diffusion Weighted MRI

Diffusion weighted imaging (DWI) is a form of imaging based upon measuring the random

Brownian motion of water molecules within a voxel of tissue. [21] It emerges as a valuable

imaging modality to characterize the white-matter microstructure [30, 54, 8]. Particularly,
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the information gathered by DWI has lead to great progress in the human connectome

project. [9] This comprises a complete description of neuronal connectivity in the brain,

which promises to greatly expand our knowledge about the brain.

2.2.1 The MRI Experiments

MRI experiments all rely on the application of a strong magnetic field of strength B0, which

aligns the magnetic spins of all atoms inside the scanner. In relaxation contrast MRI imaging,

the tissue dependent proton density (PD), rate constant T1 and T2 determine the signal

amplitude. The degree to which T1 and T2 influence the image contrast is determined by the

repetition time (TR), which is the time between two consecutive excitations, and the echo

time (TE), which is the time after spin excitation where peak signal intensity occurs. For

details of MRI, a good reference is [20].

Diffusion weighting is a method in MRI experiment allowing the amount of diffusion to

be reflected in the imaging contrast. The basic principle behind diffusion weighting is the

application of a dephasing gradient followed by a rephasing gradient. [1] The process of

dephasing and rephasing have no effect on stationary spins. However, for spins that move

along the applied gradient direction, their effects cannot be cancelled out. This results in

a smaller contribution to signal intensity for water molecules that diffuse. In other words,

diffusion leads to a weakened intensity in the acquired images.

A scan in the DW-MRI experiment consists of a measurement S0 without diffusion weight-

ing, and several measurements Sg with diffusion weighting but along different directions g.

2.2.2 The Stejskal-Tanner Equation

The measurements S0 and Sg are linked via the well-known Stejskal-Tanner(ST) equation

[47]

ln(
Sg
S0

) = −bD(g) (2.7)
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where D(g) is the diffusion strength along direction g. The parameter b, which is the so-

called b-value, is a collection of a number of MRI experiment related parameters, e.g., the

gyromagnetic ration, the strength of the gradient and so on. In practical DW-MRI experi-

ments, people always choose an appropriate b-value and ignore the factors it is composed of.

For example, a value of b = 500s/mm2 is used in the fetal macque scans whose data is used

in the experiments presented in the following chapters. Typically, higher b-value indicates

more diffusion weighing and therefore higher accuracy for ODF reconstruction than lower

b-values. However, high b-value also requires long diffusion time which results in a longer

echo time and further a lower Signal to Noise Ratio (SNR) of the acquired images. Therefore,

an appropriate b-value needs to be carefully chosen as a trade-off between different aspects

of the acquired images.

2.2.3 Determination of the Rank-2 Tensor

Given sufficient measurements of diffusion strength along different directions, any kind of

diffusion profile mentioned above can be estimated with high accuracy. We present the

process of estimating the rank-2 tensor model as an example. Because there are six degrees of

freedom in the rank-2 tensor, at least 6 diffusion measurements along non-collinear diffusion

directions are needed, in addition to S0. While 6 measurements are the least, employing

more diffusion directions for MRI experiments makes the tensor estimation more accurate.

We generalize Eqn. 2.7 to the rank-2 order tensor model, as in Eqn. 2.8.

ln(
S

S0

) = −bgDgT (2.8)

Assuming in total N non-collinear diffusion directions are employed for measurements,

the diffusion tensor can be estimated via least square fitting, as in Eqn. 2.9.
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


Dxx

Dyy

Dzz

Dxy

Dxz

Dyz




=




g2
1,x g2

1,y g2
1,z g1,xg1,y g1,xg1,z 2g1,yg1,z

g2
2,x g2

2,y g2
2,z g2,xg2,y g2,xg2,z 2g2,yg2,z

...
...

...
...

...
...

g2
N,x g2

N,y g2
N,z gN,xgN,y gN,xgN,z 2gN,ygN,z




−1 


lnS1

S0

lnS2

S0

...

lnSN
S0




(2.9)

The whole DW-MRI experiment finally gives us one image volume without diffusion

weighting and N image volumes with different diffusion weighting. If these image volumes

are aligned perfectly well during the scan, Eqn. 2.9 is carried out per voxel for tensor

estimation. However, if there are motion artifacts, this per-voxel fitting process becomes

inaccurate. How to estimate the motion to reposition the voxels to where they should be,

and perform the subsequent ODF reconstruction from the scattered data are the focuses of

the next two chapters, i.e., chapter 3 and chapter 4.
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Chapter 3

MOTION ESTIMATION FOR DWI SLICES

3.1 Introduction

As mentioned in the previous chapter, the estimation of a diffusion profile is based on a set

of diffusion measurements and a non-diffusion measurement for a same place. If the subject

moves, the set of measurements are scattered in the space. In order to build the corre-

spondence of these measurements, movement of the subject needs to be known or estimated.

Therefore, motion correction is crucial for reconstruct all the diffusion profiles in the domain.

Fetal MRI is a particularly challenging task, as the fetal brain moves with a large extend

within highly deformable maternal tissue, resulting in highly corrupted images. If using a

fast echo planar imaging (EPI) acquisition, it is a common assumption that the within-slice

motion can be ignored for most cases. However, motion between slice excitation causes the

slice sets scattered in the space. As illustrated in Fig. 3.1(a), the fetal brain moves when

the slices are acquired. If we consider these slices parallel to each other with respect to the

brain anatomy as how they are physically acquired, the resulting image is corrupted known

as motion artifacts, as illustrated in Fig. 3.1(b). To recover the underlying anatomy, it is

necessary to estimate the changes in position and orientation of the DWI slices and reposition

them accordingly with respect to the underlying anatomy, as shown in Fig. 3.1(c).

The motion extension in fetal MRI is usually larger than that in adult MRI due to the

lack of subject cooperation and the less restriction of the motion in in-utero. In addition,

maternal breathing introduces another kind of motion. As an example, Fig. 3.2 shows a

macaque brain image from three different views. The scan was performed on the coronal

plan of the brain. From the figure, we can see that the coronal view (the 3rd row) has almost

no motion artifact, which confirms the assumption that within-slice motion can be ignored.
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Figure 3.1: (a) The subject (brain) is moving during the scan. (b) If no motion estimation

is performed, the acquired slices are considered parallel to each other, resulting in image

artifacts. (c) Motion artifacts can be removed by repositioning the slices, known as motion

correction. Modified figure from [56].
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Figure 3.2: A structural image from a fetal macaque brain, shown in three orthogonal views.

The motion artifacts due to maternal breathing are clear in the image. Note that the coronal

view has no artifacts because that is the 2D place in which the slices are acquired.

However, the axial and saggital views are corrupted due to the between-slice motion. Note

that the motion artifact in the image is primary due to maternal breathing as the subject

was sedated during the scan.

There have been a number of published works for fetal motion correction for different

kinds of MRI, e.g., structural MRI [41, 28, 32, 17, 12], functional MRI [31, 38, 46] and DW-

MRI [27, 32, 37, 13]. Compared to motion correction fro structural MRI and fMRI data,

DW-MRI data is more challenging because of the physical relationship of the measurements,

modeled by the ST equation. Up till [13], all the work for DW-MRI motion correction sim-

ply ignores modeling this relationship and treats the DW-MRI as the structural MRI. While

this simplification can remove the artifacts to some extend, better results can certainly be

achieved if the relationship is incorporated in the algorithm design. In the method sec-

tion, we briefly introduce the current state-of-the-art methodology for DW-MRI slice motion

estimation as in [13].
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3.2 Methods

3.2.1 DW Slice Motion Estimation Framework

In this section, we present the approach for estimating rigid motion parameters for all the

slices, denoted as Φ, assuming that the ground-truth diffusion volume I is given. To estimate

Φ, we want to maximize its probability. That is:

argmax
Φ

p(Φ|S, I) = argmax
Φ

p(S|I,Φ)p(Φ|I) (3.1)

where S is the set of slices and Φ = {φk}Kk=1 is the set of to-be-estimate slice motion transfor-

mations. By assuming statistical independence of the measurement noise between acquired

slices and the independence between the reconstructed volume I and motion transformations

Φ, we convert problem (3.1) to

argmax
Φ

p(Φ|S, I) = argmax
Φ

p(Φ)
N∏

k=1

p(Sk|I, φk) (3.2)

where p(Sk|I, φk) is the likelihood function for each acquired slice. By further assuming the

statistical independence of the measurement noise over all the voxels x′s in slice Sk, the

likelihood can be estimated from a generative model

p(Sk = sk|I, φk) =
∏

x

exp(−γ(x)‖sk(x)− E[Sk|I, φk](x)‖2
L2

) (3.3)

where γ(·) is a binary function approximately selecting the collection of voxels under rigid

motion, which is the brain in this application. The expected value for each voxel in a 2-

D slice, i.e., E[Sk|I, φk](x) can be estimated by locating the 2-D slice in the 3-D diffusion

volume I given its transformation. We defer its discussion to section 4.2.3.

3.2.2 Motion Prior

The motion of fetal brain can be modeled as a succession of random rigid transformations,

which consist of 3 translation parameters and 3 rotation parameters. Since the interleaving
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slices have timing information which can be obtained from the DICOM data files, they can

be temporally reordered.

The term p(Φ) allows us to incorporate prior knowledge on the slice motion due to the

brain movement into the optimization. The regularization form should be:

p(Φ) =
∏

k

exp(−β · d(φk, φk+1)) (3.4)

where β is a constant controlling the regularization strength, and d measures the distance

between the transformations for adjacent slices.

As mentioned above, φ is rigid transformation parameter that contains 6 elements. If as-

suming it obeys the Gaussian distribution, and putting equal emphasize between translation

and rotation parameters, we can define the distance between the transformations using L2

norm as:

d(φk, φk+1) =‖ φk − φk+1 ‖2
L2

(3.5)

An observation from the data is that, the fetal head motion is generally smooth but

with some large abrupt changes among the intervals of the slice acquisitions. Therefore,

the assumption of Gaussian distribution and the subsequent L2 norm metric may not be

accurate for modeling. Instead, the Huber norm is a better choice to be applied here, The

Huber function is a combination of L1 norm and L2 norm, which is defined as:

Lδ(a) =





1
2
a2, for | a |≤ δ.

δ(| a | − δ
2
), otherwise.

(3.6)

Then, we can write p(Φ) as:

p(Φ) =
∏

k

exp(−β ‖ φk − φk+1 ‖2
Lδ

) (3.7)

Finally, we plug equations (3.3) and (3.7) into equation (3.2), and take the logarithm of

it. This leads to the complete formula that estimate Φ.

Φ̂ = argmin
Φ

K∑

k=1

∑

x∈Sk

γ(x)‖sk(x)− E[Sk|I, φk](x)‖2
L2

+ β

N−1∑

k=1

‖φk − φk+1‖2
Lδ

(3.8)
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3.2.3 Link to ODF Volume Reconstruction

In the DWI slice motion estimation framework, we assume that the ground-truth ODF

volume I is given, which allows the incorporation of ST equation to the relate diffusion and

non-diffusion weighted signals. This is also indicated in Eqn. 3.1. However, this assumption

can hardly be valid as I is also what we want to estimate. This gives us an chicken-and-

egg situation, where the motion parameters Φ is needed for estimating the ODF volume I,

meanwhile I is needed for the determination of Φ as well. In the regime of optimization, this

situation can be disentangled by alternately estimating one parameter set, i.e., Φ or I, while

freezing the other parameter set, i.e., I or Φ. The alternating process leads to a convergence

for both of the sub-optimization problems, and therefore enable a good estimation of both

parameter sets. We discuss the details of ODF volume (I) reconstruction in Chapter 4.
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Chapter 4

SUPER-RESOLUTION ODF RECONSTRUCTION FROM
MOTION SCATTERED DWI SLICES

4.1 Introduction

The previous chapter has discussed about how to remove motion artifacts for DW-MRI

due to the subject movement. As a result of the motion, the acquired 2-D slices are no

longer regular sampled and the orientations of the DW slices are no longer consistent with

the diffusion measurement directions during the scan, as in Fig. 4.1(a). In other words,

when the estimated transformations from motion correction process are applied to map

the acquired slices into a consistent anatomical frame, measurements are scattered in both

spatial and angular domains. It is a necessity to formulate a continuous 3-D ODF volume

as in Fig. 4.1(b) from these motion scattered slices. The 3-D diffusion volume is then used

for subsequent image processing like tractography. The ODF volume can be considered as

a 3-D volume of which each voxel contains an ODF rather than a single value. To achieve

this, techniques for estimating the ODF onto the regularly sampled voxel grid are needed.

This is the focus of this chapter.

Jiang [27] described the first work on fetal slice motion correction using an interpolation

method to fit a rank-2 tensor diffusion model to the observed slice data. Oubel [37] sug-

gested a model free interpolation approach to reconstruct a 5-D regularly sampled diffusion

volume. Interestingly this may permit fitting of more complex diffusion models than the

rank-2 tensor. In this approach, a 5-D spatio-angular radial basis function (RBF) interpola-

tion was employed to account for motion effects in both the diffusion location and diffusion

direction spaces. However, the approach is limited because the relation between the diffusion

directions in the angular space, modelled by the ST equation, can not be well approximated
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(a) Scattered Slices (b) Volume to be reconstruct

Figure 4.1: (a) 2-D imaging slices become scattered in the space after being repositioned

using their estimated geometric transformations. (b) An ODF volume of higher resolution

can be reconstructed from the scattered DWI slices.

by the proposed angular RBF.

A key limitation of these interpolation based methods is that they cannot incorporate

spatial deconvolution of multiple acquisitions to enhance the resolution of the final model.

Conventional fetal MRI studies in particular make extensive use of multi-slice acqusitions

with fine in-plane resolution in multiple thick slice planes to provide views with complimen-

tary resolution [41] . These multiple views can be exploited by fusion to form a single image

with both enhanced signal to noise and enhanced resolution [42]. In diffusion imaging of

adults, Scherrer [44] proposed a method to perform super resolution (SR) reconstruction

from orthogonal anisotropic DW acquisitions, where no motion occured between slices, by

estimating a sequence of 3-D volumes for all the diffusion measurement directions. To make

the diffusion directions consistent for each acquisition, Kriging was used for interpolation in

angular space, which could introduce errors in this domain. Recently, Fogtmann [13] pro-

posed a novel unified framework for both diffusion direction sensitive slice registration and
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iterative 3-D DTI reconstruction from moving brain anatomy. This used a single measure of

mismatch between the rank 2 diffusion model being estimated and observed slices to refine

both slice alignment and deconvolution by alternating between solving these two problems.

For reconstruction, the maximum a posterior (MAP) method enables explicit modelling the

slice resolution to generate SR reconstruction from multiple slice orientations. Though this

framework has been proved to be a significant improvement compared to the previous work,

it focuses on the simple rank-2 tensor model for alignment. For the final reconstructed im-

age, this limits its application when describing voxels containing crossing fibers, a condition

referred to as intravoxel orientational heterogeneity (IVOH) [37]. In conventional DWI where

no motion scattering occurs, a significant body of work has shown the ability of higher order

models to better represent the underlying anatomy [45, 52]. However, these works do not di-

rectly extend to slice scattered data or incorporate spatial deconvolution to provide isotropic

resolutions from multiple sets of thick slices with acquired with different orientations.

In this chapter, we summarize the published ODF reconstruction frameworks, and pro-

pose a method to robustly reconstruct a higher order ODF model at isotropic spatial res-

olutions from motion scattered DW-MRI slices. Experimental comparison is further made.

Specifically, we extend iterative reconstruction approaches to a spherical harmonic (SH)

model and estimate the coefficient parameters at each voxel based on a maximum likelihood

framework. This model fitting incorporates an explicit slice profile deconvolution allowing

isotropic spatial SR reconstruction of the diffusion model on a regular voxel lattice.

4.2 Methods

4.2.1 Scattered Multi-slice DW Data

We focus on single shot, multi-slice echo planar spin echo imaging to provide optimum ro-

bustness to within-slice motion. The sequence collects a stack of N + 1 regularly sampled

images S̃ = {S̃0, S̃1, . . . , S̃N}, where S̃0 denotes data obtained without diffusion weighting,

and S̃i=1:N denotes DW images acquired with diffusion-sensitizing direction gi in the fixed
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scanner coordinate system and strength b. Ideally, S̃0 and S̃i are related through the ST

equation, i.e., S̃i = S̃0e
−bDi , where Di is the diffusion strength along direction gi. However,

distortions due to fetal motion within the scanner coordinate frame destroy this relationship

by scattering the measurements in space. In this work we assume that slice registration has

retrieved the spatial transformation parameters mapping the data into a consistent anatom-

ical frame. Again the within-slice motion is ignored. We express the original data S̃ in the

unit of a slice, i.e.S̃ = {Si}Kk=1. Each slice Si is associated with its spatial mapping Xi and

diffusion-sensitizing direction gi, which can represent where this slice sensitivity lies in the

fixed coordinate system. In the case of rigid body between-slice motion, denoted as φk, which

consists of a rotation R and translation T , each slice is transformed to a location {X ′i, g′i} by

X ′i = RiXi + Ti and g′i = Rigi in the anatomical frame.

4.2.2 Super-resolution Reconstruction Framework

Super-resolution (SR) is a large research field encompassing many applications. [53, 25] In

our application, the principle of SR is to combine low resolution (LR) images to produce an

image that has a higher spatial resolution than the original images. For MRI data of subjects

under motion control, the SR work mainly focuses on using lower resolution data acquired

on a regular grid and often assuming simple translation between the lower resolution sample

grids. [19, 39, 7] In comparison, the fetal brain MRI data which consists of multiple 2-D

thick slices is more challenging, as it is corrupted by full 3-D rigid motion on a slice by

slice basis. Though this data specificity does not affect the way that the SR problem is

modelled, it introduces additional challenges because SR becomes a reconstruction problem

with scattered anisotropic data.

As in most of common SR approaches, we model the problem in our application according

to its physical observation and then estimate a solution by inverting this model: [42]

sk = MkBkφkI + nk for 1 ≤ k ≤ K (4.1)

where I is the high resolution (HR) ODF volume, sk denotes the k-th LR image slice. Mk is a
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subsampling matrix, Bk is a blur matrix, φ is the geometric transformation of k-th LR image

slice. n represents the noise. K is the number of slices of the LR images. The purpose of

SR is to remove the effect of the blurring convolution and to increase the voxel grid density.

The unknown ODF volume I is estimated by inverse the observation model:

Î = argmin
I

K∑

k=1

‖sk −MkBkφkI‖2
L2

(4.2)

The L2 norm is used here because we assume that the image noise n follows a Gaussian

distribution. Solving Eqn. 4.2 is an ill-posed problem, which means that the solution Î

cannot be uniquely determined. In this regard, some form of regularization plays a key role

and must be included in the energy function to stabilize the problem or constrain the space

of solutions. [51] This leads to

Î = argmin
I

K∑

k=1

‖sk −MkBkφkI‖2
L2

+ α · Reg(I) (4.3)

where α is a constant controlling the regularization strength.

4.2.3 Simulate LR Images using Observation Model

As in the observation model, we can synthesize the 2-D LR image slice following MkBkφkI.

In our application, it has the following expression as in 4.4:

MkBkφkI(x) =

∫
G(z)S0(φk(x+ z))e−bD(I(x+z),φk(x+z),g′k)dz (4.4)

The 3-D Gaussian kernel G(z) is used for modelling the in-plane point spread function

(PSF), which corresponds to the blurring effect by Mk. Still, φk represents the geometric

transformation effect. Due to the scattering nature of the data, φk(x+ z) is often not lying

on 3-D regular grid of the reconstructed volume. The downsampling effect is implicitly

encoded here. To get the value at these specific locations, tri-linear interpolation on the

grid is used. D(·) is where the diffusion model plugs in, which can be both rank-2 tensor

model or spherical harmonica model. For spherical harmonic model based experiments in
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(a) A 3-D ODF volume to be re-

construct

(b) A 3-D volume of single diffu-

sion values

(c) A 2-D slice of single diffusion

values

Figure 4.2: The steps of simulating a 2-D slice. A 3-D ODF volume (a) firstly gets projected

along a specific diffusion direction. This results in a 3-D volume of single diffusion values

(b), which is further projected to a 2-D slice of single diffusion values (c).

the following sections, the spherical harmonic basis functions of the first three even degrees,

i.e., l = 0, 2, 4 are used, making the total number of the spherical harmonic basis functions

to be 15.

In equation 4.4, ST equation is explicitly incorporated as S0(φk(x+z))e−bD(I(x+z),φk(x+z),g′k).

This term consists of two projections. The first one is in the spherical domain, from the ODF

to a single diffusion value along a specific direction. From this projection, we get a 3-D vol-

ume of single values as in Fig. 4.2(b) from a 3-D volume of ODFs as in Fig. 4.2(b), which is

just I. The 3-D volume of single values is further projected to a 2-D slice as in Fig. 4.2(c),

given the geometrical transformation.

4.2.4 Image Regularization

Image regularization allows us to incorporate prior knowledge on the reconstructed volume

into the optimization. Most medical image reconstruction applications assumes some kind

of spatial homogeneity by using metrics such as smoothness [44] or total variation [29].
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Specifically, we want to encourage I to be piecewise smooth permitting abrupt changes at

boundaries between uniform regions of tissue. This can be achieved by using the Huber norm

and setting

Reg(I) =
∑

x,g∈I

‖ 5x,gI(x, g) ‖2
Lδ

(4.5)

5 is chosen as the first order discrete gradient operator. The SH coefficients are treated

equally, which means that we apply the same regularization on each of the 3-D SH coefficient

maps. Finally, the whole objective function is given in equation 4.6 and is optimized by any

standard gradient based optimization method. L-BFGS method is used in this work.

Î = argmin
I

K∑

k=1

‖sk −MkBkφkI‖2
L2

+ α ·
∑

x,g∈I

‖ 5x,gI(x, g) ‖2
Lδ

(4.6)

4.2.5 Link to Maximum Log-likelihood

The principle behind the super-resolution reconstruction framework is maximum log-likelihood.

That is, we want to maximize the probability of the unknown 3-D HR image volume I given

all the 2-D LR image slices and their geometric transformations. Applying the maximum a

posterior (MAP) framework, we can write it as:

argmax
I

p(I|S,Φ) = argmax
I

p(S|I,Φ)p(I|Φ) (4.7)

where S is the set of slices and Φ = {φk}Kk=1 is the set of estimated slice geometric transfor-

mations. By assuming statistical independence of the measurement noise between acquired

slices and the independence between the reconstructed volume I and motion transformations

Φ, we convert problem (4.7) to

argmax
I

p(I|S,Φ) = argmax
I

p(I)
N∏

k=1

p(Sk|I, φk) (4.8)

where p(Sk|I, φk) is the likelihood function for each acquired slice. By further assuming the

statistical independence of the measurement noise over all the voxels x′s in slice Sk, the like-

lihood can be estimated from a generative model where sk has a mean value of E[Sk|I, φk]. It
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follows a distribution corresponding to L. For example, a Gaussian distribution corresponds

to L2 norm. It has the following form:

p(Sk = sk|I, φk) =
∏

x

exp(−‖sk(x)− E[Sk|I, φk](x))‖2
L (4.9)

E[Sk|I, φk] has the same form as in equation (4.4).

The image prior p(I) assumes that the image gradient, both spatially or spherically, fol-

lows a distribution with a mean value of 0. If this distribution is assumed to be corresponding

to the Huber norm, we can write p(I) as:

p(I) =
∏

x,g

exp(−α ‖ 5x,gI(x, g) ‖2
Lδ

) (4.10)

If we plug equations (4.9) and( 4.10) into equation (4.8) and take the logarithm of it, we

get the exactly same equation (4.6), which is the super-resolution reconstruction framework.

4.3 Imaging Data

4.3.1 Human data

This set of DW-MRI data was acquired from an adult male volunteer using a Siemens 3T Trio

scanner using a single shot EPI sequence with 20 noncollinear diffusion gradient measurement

directions with imaging parameters b=1000s/mm2, TE=94ms and TR=10900ms. This has

a voxel resolution of 1.885×1.885×2mm3 and significant signal to noise ration in comparison

to abdominal fetal DWI data. There are 3 stacks in total, with motion artifact only present

in the third stack.

4.3.2 Macaque data

This set of DW-MRI data was acquired from a sedated macaque fetus in utero at gestational

age 135 days (of a total gestational term of 165 days) using a Siemens 3T Trio scanner at the

Oregon National Primate Research Center. This scan consists of nine axial, nine coronal, and

nine sagittal single shot EPI sequences with eddy current compensation along 20 noncollinear
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diffusion gradient directions with b=500s/mm2, TE=90ms and TR=5000ms. Thus, this

scan gives 27 sets of diffusion data in total. The voxel resolution is 1.125×1.125×3mm3.

The primary source of minor motion in this dataset was due to maternal breathing and was

corrected using the method in [13].

4.4 Experiments and Results

4.4.1 Rank-2 Tensor Model

To validate the reconstruction using the rank-2 tensor model, we carry out the experiments

using the fetal macaque data. We extract the FA map from the reconstructed rank-2 tensor

map, and perform tractography to recover fibers crossing corpus callosum using the deter-

ministic Fiber Assignment by Continuous Tracking (FACT) algorithm [35]. The resolution

of the reconstructed volume is set to be isotropic 0.75mm for the macaque imaging data.

The parameters were set to be α = 108 and δ = 40. Convergence of the L-BFGS typically

required 15 iterations using a gradient tolerance of less than 10−6.

Principal Diffusion Direction Map

We extracted the FA map and principle direction map from the reconstructed rank-2 tensor

ODF map via eigenvalue decomposition. We also emphasize relatively more anisotropic

diffusion by weighting the principle direction map by the FA map on a voxel by voxel basis.

The result for the fetal macaque data is shown in Fig. 4.3.

Tractography

We perform tractography to recover white matter fiber tracts running across the corpus

callosum. This is done by manually selecting seeds central to the corpus callosum structure.

The recovered tracts are shown in Fig. 4.4, where the structural development of the corpus

callosum fiber tract is in accordance with the expectation.
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Figure 4.3: Principle diffusion direction map weighted by the FA map on a voxel by voxel

basis from a fetal macaque brain, at gestational ages of 85 days, 110 days and 135 days,

as indicated in the figure, respectively. The principle directions are color-coded, where red

denotes left-right, green denotes front-back and blue denotes top-bottom direction of the

brain. We show the views in axial, saggital and coronal planes, as from the leftmost column

to the rightmost column of the figure, respectively.
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Figure 4.4: White matter fibers running through the corpus callosum from a fetal macaque

brain, at gestational ages of 85 days, 110 days and 135 days, as indicated in the figure,

respectively. The fiber tracts are color-coded by the directions, where red denotes left-right,

green denotes front-back and blue denotes top-bottom direction of the brain.

4.4.2 Spherical Harmonic Model

To validate the reconstruction using the spherical harmonic model and to compare it to

the rank-2 tensor model, we first perform reconstruction using both of the models. In both

cases, the resolution of the reconstructed volume is set to be isotropic 0.75mm for the fetal

macque data and isotropic 0.5mm for the adult human data. The parameters were also set

to be α = 108 and δ40. Convergence of the L-BFGS typically required 25 iterations using

a gradient tolerance of less than 10−6. In observation of different properties of adult human

data and fetal macaque data, we design different experiments accordingly as below.

Experiments for Human Adult data

In adult brain, the white matter structure has already fully developed, which the ODF

profile can not be simply modeled by the rank-2 tensor in some regions, i.e., where multiple

fibers meet together. In terms of the image quality, it has a high SNR, which allow the
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reconstruction of a higher order ODF with high accuracy. Therefore, it can be used to

validate the correctness of the reconstruction framework.

Visualization of spherical harmonic coefficient maps. Since each spherical har-

monic basis function is unique in the orientation and the variation frequency along that

orientation it encodes, we firstly directly visualize the coefficient maps for the basis func-

tions. Fig. 4.5 shows the coefficient maps of the spherical harmonic basis functions of

degree-0 in column 1, and degree-2 in the following five columns. From the figure, we can see

that white matter tracts having a same diffusion direction are reflected in a same coefficient

map, and is also in accordance with the orientation encoded in the spherical harmonic basis

function.

Direct ODF Visualization. To evaluate the ability of the SH model to detect multiple

fiber tracts, we directly visualize and compare ODFs from the two models. To locate voxels

which contain multiple fiber tracts, we refer to the FA weighted principle diffusion direction

map obtained by the rank-2 tensor model, as shown in Fig. 4.6(a). From the coronal view in

Fig. 4.6(a), it is clear that the voxel marked by the white “+” mark is in the region where

the corpus callosum and the cortical-spinal tracts meet. Comparing Fig. 4.6(b) and (c),

we can see that the spherical harmonic model in (c) successfully depicts the crossing fiber

structure which is not achieved by the rank-2 tensor model in (b).

Experiments for Fetal Macaque data

The lack of motion artifacts in the original data allows us to use the reconstructed diffusion as

the ground truth to explore slice scattering in the following experiments. Apart from direct

ODF visualization, we considered using FA map to interpret and compare the results from

the two models. The FA map from a rank-2 tensor diffusion volume is easily obtained by the

eigenvalue decomposition. To estimate the FA map from the spherical harmonic diffusion

volume, we estimate the diffusion strength along the directions of the eigenvectors obtained

from the rank-2 tensor for each voxel.

Reconstruction from Scattered Image Data To simulate the scattered data in a
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Figure 4.5: The coefficient maps of the SH basis functions of degree-0 in the 1st column and

degree-2 in the following five columns. The corresponding profiles of the SH basis functions

are shown right below.
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(a)

(b) (c)

Figure 4.6: (a) An voxel lies on the crossing point of the corpus callosum and the cortical-

spinal tracts is selected, as indicated by the white “+” mark; (b) diffusion profile described

using the rank-2 tensor model; (c) diffusion profile described using the spherical harmonic

model.
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(a)

(b)

Figure 4.7: The slicewise head motion trajectory for a human fetal brain in a clinical DW

scan. (a) translation along X,Y,Z directions in red, green, blue respectively; (b) rotation

along X,Y,Z directions in red, green, blue respectively. The long solid vertical lines separate

the slices of different planes.

realistic manner, we use the high quality reconstructed primate fetal data and a measured

human fetal head motion trajectory from a clinical DW scan. The human study consisted of

2, 4 and 4 copies of axial, saggital and coronal datasets, respectively. Each scan was along

10 noncollinear diffusion gradient directions, giving 2904 data slices in total. This motion

trajectory is estimated by a slice registration based technique in [13], and is shown in Fig.

(4.7).

Since the primate study contains more slices (11634) than that of the human fetal study

(2904), we extend the length of the known motion trajectory by concatenating reflected copies

of the human trajectory to create a contiguous time series. This is used to simulate the 27

motion scattered sets of primate data, whose resolution and planar orientation are estimated
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to match the original scans. Using the known slice transformations back to a common

reference anatomy, we perform the iterative reconstruction using the spherical harmonic

model from all the 27 sets of the motion scattered data. The result is then compared to that

from the reconstruction using the original non-motion scattered 27 sets of data.

Evaluation of Amount of Data for Reconstruction. In order to simulate a realistic

human study with less imaging time, we perform reconstruction using only 12 out of the 27

sets of the motion scattered data, with equal number of sets for axial, coronal and sagittal

planes. The FA map and ODF are computed and compared to those obtained using all 27

sets of data.

Experimental Results. The reconstructed FA maps from all the experiments above are

shown in Fig. 4.8. Comparing the first two columns, we can see that the SH model recovers

the very similar FA volume as the rank-2 tensor model, which validates our method on the

non-motion scattered data. The comparison of column 3 to column 2 shows the robustness

of our method on the motion scatted data. From the last column we can also conclude that

our method is robust to more realistic human fetal studies with less imaging time.

The voxel selected to contain multiple fiber tracts is indicated by the white crossing mark

in the first row of Fig. 4.9. It lies on the crossing point of the developing corpus callosum

and the cortical-spinal tracts. The reconstructed ODFs from all the experiments above are

all shown in Fig. 4.10. From (a) and (b), we can find that the reconstructed ODF from

SH model has more power in detecting multiple fiber tracts within a voxel over the rank-2

tensor model. The developing myelinated fibers are illustrated using the blue lines. (c) and

(d) validates that our proposed method is robust in the case of motion scattered data and a

realistic human fetal study time.

4.5 Discussion and Conclusions

In the chapter, we have presented a framework for robustly reconstructing the ODF model

at isotropic spatial resolution from motion scattered DW-MRI slices. We also propose to

extend iterative reconstruction approaches to a spherical harmonic (SH) model from the rank
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Figure 4.8: Consistency of basic diffusion measures: FA map reconstructed from column 1)

rank-2 tensor model using all 27 stacks of original data; 2) SH model using all 27 stacks

of original data; 3) SH model using all 27 stacks of simulated motion scattered data; 4)

SH model using 12 stacks of simulated motion scattered data. Results are shown in axial,

saggital and coronal views from the top to the bottom row, respectively.

Figure 4.9: The FA weighted principle diffusion direction map in axial, saggital and coronal

planes. The white marked voxel contains multiple fiber tracts.
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(a) (b)

(c) (d)

Figure 4.10: The ODFs reconstructed from (a) rank-2 tensor model using all 27 stacks of

original data; (b) SH model using all 27 stacks of original data; 3) SH model using all 27

stacks of simulated motion scattered data; 4) SH model using 12 stacks of simulation motion

scattered data. The blue lines in (b)-(d) illustrate the developing myelinated fibers. All

ODFs are viewed from the same angle and scale.
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2 tensor model, which enables crossing fiber detection. The iterative reconstruction fit of

the model parameters and spatial deconvolution was achieved using a maximum likelihood

framework.

Experiments with both the human adult and fetal primate brain data show that our

proposed SH-based approach can correctly recover more complex ODF than the rank-2 tensor

model from the motion-scattered slice data in and after later gestational ages, which will make

it possible to accurately depict crossing fiber tracts from especially in-utero imaging data.
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Chapter 5

STUDY OF FETAL BRAIN CONNECTIVITY IN SERIAL
IMAGING STUDIES

5.1 Introduction

The brain can be considered as a network of highly interconnected small regions. Therefore

studying its structural connectivity can help provide a better understanding of the organi-

zation of the brain. Recently, non-invasive techniques such as diffusion-weighted MRI have

been used to study structural connectivity in adults and infants which have led to the dis-

covery of small-world characteristics of the brain [26][18]. More recently, Fan [10] studied

the brain network of healthy pediatric subjects at ages of 1 month, 1 year and 2 years, and

identified the development of small-world topologies in this early period of development.

A typical pipeline for studying brain connectivity using DW images is shown in Fig. 5.1.

Specifically, both DW image and structural image (e.g., T1-weighted or T2-weighted) are

acquired for a same subject. Image artifacts such as motion artifacts are carefully removed if

there is any. Volume registration is then carried out to align the DW image and the structural

image. After that, white matter fiber tracing (i.e., tractography) is performed using the DW

image, while brain parcellation into functional regions is carried out using the structural

image. With the parcellated regions considered as graph nodes, and their connections as

graph edges which are established if there are fibers running between, a connectivity graph

for the brain can be assembled. The brain connectivity property can then be examined by

standard graph analysis.

An important step in these studies is the partitioning of the brain into functional regions

of interest (ROI’s) between which connectivity is evaluated. [55, 6] The adult and pediatric

brain parcellation schemes focus on dividing the cortex into units that represent known
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Figure 5.1: A pipeline for the study of brain connectivity using both DW and structural

MRI image data.
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(a) 85 days (b) 110 days (c) 135 days

Figure 5.2: The brain of a same macaque fetus but at different gestational ages.

functional divisions often defined in MRI by the presence of cortical folds or sulci and gyri.

However in the developing fetal brain such units may not be present at a given gestational age

and their structural correlates in the form of sulci and gyri are not developed. An example is

shown in Fig. 5.2, where the dramatic change of the shape of a same fetal brain at different

gestational ages is clearly shown.

In order to study early brain growth we therefore must develop a connectivity mapping

methodology that is independent of cortical folding and its rapid change over time. A very

recent structural connectivity study [54] of neonatal brains used two automated methods

for parcellating the brain surface, i.e., (1) the brain was partitioned using 3D regular lattice

into spatial regions of equal spatial extent along the x, y, and z axes of the imaging volume,

and (2) derived subcortical surface was divided based on Recursive Zonal Equal Area Sphere

Partition. However, for serial studies of growth over time these approaches create partitions

which can have inconsistencies in region areas as the brain grows. The first method may

break regions unexpectedly and results in large differences in ROI sizes, especially when the

number of ROI’s increases. In addition to cortical partitioning, in the fetus we are also

interested in dividing the developing cerebral mantle. Unfortunately, the second method

which is basically surface projection cannot be applied here. Hagmann [22] used a two phase

random parcellation method to study the adult brain structural connectivity. However the

number of ROI’s cannot be pre-determined in this method. This is a limitation in the case
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where one is interested in performing a controlled analysis of network by varying the number

of nodes systematically.

Rather that assuming a specific functional and anatomical correspondence over time

from which to derive connectivity measures as the brain rapidly develops, here we explore

approaches that simply aim to sample that anatomical or functional pattern and its connec-

tivity in a way that allows us to evaluate spatial connectivity as the brain grows. As with

any imaging process, sampling of spatial data can be achieved using different schemes. Here

we explore adaptations of regular and random sampling with the aim of ensuring consistency

of anatomical sampling over time. We use animal imaging data (the macaque monkey) as a

basis for this study as it provides a high quality reference not currently available in normal

human studies.

5.2 Materials and Methods

5.2.1 Data Acquisition

We acquired a dataset consisting of both T2-weighted and Diffusion Weighted Imaging (DWI)

data of an in-vivo monkey fetus at gestational ages of 85, 110 and 135 days from a 3T Siemens

scanner. The T2-weighted data consists of 12 scans with a resolution of 0.667×0.667×1mm,

TE = 97ms, TR = 9900ms. The DWI data consists of 3 scans, each containing 27 stacks

(9 axial, 9 sagittal and 9 coronal) with a resolution of 1.125 × 1.125 × 3mm, 20 diffusion

weighted directions, b = 500s/mm2, TE = 93ms and TR = 5000ms.

5.2.2 Data Preprocessing

The T2-weighted multi-slice acquisitions were motion corrected and reconstructed to isotropic

0.5mm voxels with the approach described in [12]. All the DWI acquisitions were motion

corrected and reconstructed to a rank 2 tensor with an isotropic spatial resolution of 0.75mm

[13], which was then registered to the reconstructed T2-weighted volume and up-sampled to

the same resolution as T2-weighted volume. The T2-weighted image was segmented into
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(a) random parcellation

(b) regular parcellation

Figure 5.3: Parcellation Algorithm Overview: different steps in (a) random parcellation, and

(b) regular parcellation.

two basic regions: the cortical plate and cerebral mantle. The cerebral mantle here included

subplate, intermediate zone, deep grey matter and germinal matrix.

5.2.3 Region Partition

We consider 2 types of parcellation schemes whose steps are shown in Fig. 5.3.

Random parcellation

A number of seed points are randomly generated within the mask followed by region growing,

where all voxels in the mask are assigned to the nearest seed point. To avoid trivial ROI’s

whose size would be much lower than that of others, a distance threshold was used to make

the random seed points well distributed when they were generated. This ensured that the

distance between any pair of seed points was above the threshold. An appropriate threshold

is selected by first creating the partitioning with a high value and reducing this until the

required number of seed points is generated.
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Regular parcellation

All volumes (T2-weighted, DTI and mask) were manually transformed to standardize the

axial orientation and centering. A bounding box of the mask was calculated and then divided

into cuboids of equal size. These cuboids were then assigned an integer index derived from

their x, y, z locations in the image space. The individual image voxels within the brain

mask were then assigned label values corresponding to the index of the cuboid they were

in. The assignment may result in small boundary ROI’s when the mask is irregular, whose

connection to other ROI’s can be meaningless. Therefore, ROI’s whose sizes were smaller

than a predefined threshold were merged into its nearest ROI recursively until the sizes of

all ROI’s were larger than the threshold.

Comparison of Two Parcellation Schemes

Compared to the regular parcellation scheme, the random parcellation scheme has several

advantages. In particular, it allows more direct control over the number of ROI’s within the

brain mask and avoids the creation of trivial ROI’s at the brain boundary when the brain

shape becomes more complex. For random parcellation, we repeated the experiments 40

times for each number of ROI’s to specifically examine the consistency as the sampling of

the functional regions is varied. We also varied the number of ROI’s in both parcellation

schemes to examine its effect on the connectivity measures. Specifically, we partitioned

the cerebral mantle into ROI’s of which the number varies from 60 to 140 in subcortical

connectivity study. In cortical connectivity study, we partitioned the cortical plate into

ROI’s of which the number ranges from 30 to 65 only using the random parcellation.

5.2.4 Tractography

Whole-brain streamlined fiber tractography was performed with the deterministic Fiber As-

signment by Continuous Tracking (FACT) algorithm [35], using a mask consisting of the

sub-plate, cortical mantle, deep grey matter and germinal matrix segmented from the re-
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constructed T2-weighted volume. A maximum turning angle of 45o, a minimum fractional

anisotropy (FA) of 0.08 and a tracing step size of 0.1 voxel were chosen. This step recovers

the fiber tracts in the white matter.

5.2.5 Network Graph Analysis

The unweighted connectivity network graph was constructed using the ROI’s resulting from

the parcellation as nodes. Two nodes are considered connected if there exists at least one fiber

connecting them. The unweighed graph is also represented as an binary adjacency matrix

AN×N , where N is the number of ROI’s and Aij = 1 if the i-th and j-th node are connected

and 0 otherwise. Small-world analysis was applied to the graph which involved computing

measurements of segregation (cluster coefficient) and integration (global efficiency) [43] and

comparing these metrics to those of a randomized network with the same number of nodes

and degree distribution. The cluster coefficient (C) and global efficiency (E) are defined as :

C =
1

n

∑

i∈N

Ci =
1

n

∑

i∈N

2ti
ki(ki − 1)

(5.1)

E =
1

n

∑

i∈N

Ei =
1

n(n− 1)

∑

i,j∈N
i 6=j

1

dij
(5.2)

where Ci is the cluster coefficient and ki is the degree of the node i, ti is the number of

triangles formed by the neighbouring nodes of node i, Ei is the global efficiency of node i, dij

is the number of nodes along the shortest path from node i to node j, n is the total number

of nodes in the node set N .

Small-world networks are characterized by dense local clustering of connections between

neighbouring nodes and short path lengths between any pair of nodes due to the existence of

relatively few long-range connections [3]. Thus, its clustering coefficient is much larger than

that of a randomized network (C >> Crand), while its global efficiency is slightly smaller

(E < Erand).
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(a) brain network (b) random network

Figure 5.4: Binary adjacency matrices of the brain network and its randomized form con-

taining 60 nodes. White denotes connection while black denotes disconnection.

5.3 Experimental Results

We performed both subcortical and cortical connectivity studies on the acquired data.

Subcortical connectivity

Fig. 5.5 shows an example of partitioning the same brain (cerebral mantle) at all 3 ages

using both regular and random parcellation schemes. Fig. 5.6 shows the traced fiber tracts

connecting cortical ROI’s at all 3 time points, which are colored by the FA map and over-

laid on the corresponding T2-weighted images. We then constructed the brain connectivity

network graph for each dataset based on the ROI’s and all traced fiber tracts.

The binary adjacency matrix of both the brain network and its randomized network were

calculated, with an example shown in Fig. 5.4. ROI’s were assigned the indices in the order

of the distance from their geometric centers to the origin point (0, 0, 0) in the Euclidean
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85 days

110 days

135 days

Random partition Regular partition

Figure 5.5: 3D surface renderring of partitioned brains at all 3 time points using both random

and regular parcellation schemes.
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(a) 85 days (b) 110 days

(c) 135 days

Figure 5.6: All fiber tracts connecting cortical ROI’s traced at all 3 time points. The fibers

are overlaid on T2W structural images and colored by FA map.
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space. This enables us to obtain information more intuitively from the adjacency matrix as

neighbouring indices are more likely to correspond to neighbouring ROI’s. Comparing the

two matrices we can see that connectivity in the brain network is more locally condensed

than that of the randomized network.

Cortical connectivity

Fig. 5.8 shows the results of small-world analysis of the cortical connectivity network. We

can observe that the cortical connectivity network also exhibits small-world characteristics.

Besides, the cluster coefficient and global efficiency increase across brain development. These

results are also robust to the number of ROI’s in the experimental range.

We performed small-world analysis on the extracted graphs. From Fig. 5.7(a,b), we

can see that the cluster coefficient of subcortical connectivity networks is much larger than

that of the random networks while the global efficiency is slightly smaller, indicating that

these networks both exhibit small-world characteristics. Both the cluster coefficient and the

global efficiency increase as the brain develops. Fig. 5.7(c,d) indicates that these network

properties are robust to parcellation schemes and different numbers of ROI’s to partition.

However, the number of ROI’s should not be too small to better reveal the development of

the fetal brain connectivity network, especially for global efficiency of the brain networks at

110 days and 135 days, when the brain is largest.

5.4 Conclusion and Discussion

The results of cortical and subcortical connectivity networks both identified small-world

characteristics of the fetal brain network. This suggests that the characteristics of brain net-

work have been selected to solve the problem of optimizing the brain information processing

since its very early development stage. Besides, the studies also demonstrated a pattern of

increased cluster coefficients as well as global efficiency, meaning the overall efficiency of the

brain in processing information increases during its maturation. These observations parallel

the fact that myelination is in progress and only partially formed at birth [11]. Furthermore,
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Figure 5.7: Subcortical connectivity: cluster coefficient and global efficiency (mean±standard

deviation) as a function of the number of nodes at all 3 ages. (a,b) compare these measure-

ments of random partition based brain network and random network for testing the small-

worldness of subcortical brain networks. (c,d) compare the measurements obtained from

both random and regular partition methods.
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Figure 5.8: Cortical connectivity: cluster coefficient and global efficiency (mean±standard

deviation) as a function of the number of nodes based on random partition scheme at all 3

ages. These measurements of random graphs are also plotted as dashed lines for testing the

small-worldness of cortical brain networks. For legend see Fig. 5.7.

the robustness of these results to the number of ROI’s indicates the feasibility of applying

small-world analysis to studying developing fetal brains which is undergoing considerable size

and shape changes. Another observation from the small-world analysis is that the cluster

coefficients of the brain network decrease linearly as the number of ROI’s increases, however

the cluster coefficients of the random network seem to decrease quadratically, as shown in

Fig. 5.7(a) and Fig. 5.8. This could potentially be useful in predicting abnormalities in fetal

brain connectivity.

In conclusion, we have studied the changes in structural connectivity networks in the

monkey fetal brain using unbiased random and regular parcellation schemes and graph theory

based analysis. The findings provide a picture of the development of fetal brain networks,

complementing the existing studies in adult and baby brain networks. Future work will

explore the use of these measures in normal human development and their use in studying

and quantifying abnormal connectivity [33].
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Chapter 6

CONCLUSIONS

In chapter 1, we have briefly introduced the current research advances in fetal brain

study enabled by conventional structural MRI. This motivates the technique development in

DW-MRI for better complementary fetal brain study. Therefore, in the thesis we focus on

addressing some key challenges in fetal DW-MRI, including ODF reconstruction from motion

scattered DWI slices and the applications of DW-MRI to study fetal brain connectivity.

In chapter 2, we have discussed the diffusion process and its mathematical models, in-

cluding the rank 2 tensor model and spherical harmonic model. We also discussed the

diffusion property inside the brain and its application to the DW-MRI. The basic principles

of DW-MRI was introduced in the end.

In chapter 3, we introduced the cause of the motion artifacts in fetal brain MRI. We then

presented the current state-of-the-art methodology for slice motion estimation for DW-MRI.

The motion parameters are iteratively estimated in a maximum likelihood framework, using

a slice to volume registration with explicit incorporation of ST equation.

In chapter 4, we have discussed a super-resolution framework for reconstructing the ODF

volume from motion scattered DWI slices. We also pointer out that this framework can

also be derived from the maximum log-likelihood framework. We proposed to extend the

diffusion model from rank 2 tensor model to spherical harmonic model for more complex

ODF description. The experimental results have shown that the proposed extension makes

it possible to accurately depict crossing fiber tracts for both adult and in-utero imaging data.

In chapter 5, we have presented the studies of changes in structural connectivity networks

in the macaque fetal brain using unbiased template-free parcellation schemes and graph

theory based analysis. This piece of work is a direct application of the work in chapter 3 and
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chapter 4, as this can not be achieved if the image motion artifacts are not removed and the

3-D ODF volume is not reconstructed.



www.manaraa.com

51

BIBLIOGRAPHY

[1] R. Bammer. Basic principles of diffusion-weighted imaging. European Journal of Radi-
ology, 45(3):169–184, 2003.

[2] P.J. Basser and C. Pierpaoli. Microstructural and physiological features of tissues elu-
cidated by quantitative-diffusion-tensor mri. Journal of Magnetic Resonance, 111:209–
219, 1996.

[3] D.S. Bassett and E. Bullmore. Small-world brain networks. The Neuroscientist,
12(6):512–523, 2006.

[4] C. Beaulieu. The basis of anisotropic water diffusion in the nervous system - a technical
review. NMR IN BIOMEDICINE, 15:435–455, 2002.

[5] D.L. Bihan. Diffusion mri: what water tells us about the brain. EMBO Molecular
Medicine, 6(5):569–573, 2014.

[6] J.W. Bohland, H. Bokil, C.B. Allen, and P.P. Mitra. The brain atlas concordance
problem: Quantitative comparison of anatomical parcellations. PLoS ONE, 4(9):1–18,
2009.

[7] E. Carmi, S. Liu, N. Alon, A. Fiat, and D. Fiat. Resolution enhancement in mri.
Magnetic Resonance Imaging, 24(2):133–154, 2006.

[8] X. Cheng, J. Wilm, S. Seshamani, M. Fogtmann, C. Kroenke, and C. Studholme. Adapt-
ing parcellation schemes to study fetal brain connectivity in serial imaging studies. IEEE
EMBS, pages 73–76, 2013.

[9] D.C. Van Essen and K. Ugurbil. The future of the human connectome. NeuroImage,
62(2):1299–1310, 2012.

[10] Y. Fan, F. Shi, J.K. Smith, W. Lin, J.H. Gilmore, and D. Shen. Brain anatomical
networks in early human brain development. NeuroImage, 54:1862–1871, 2009.

[11] R.D. Fields. White matter matters. Scientific American, 298:54–61, 2008.



www.manaraa.com

52

[12] M. Fogtmann, S. Seshamani, K. Kim, T. Chapman, and C. Studholme. A unified ap-
proach for motion-estimation and super-resolution reconstruction from structural mag-
netic resonance imaging on moving subjects. MICCAI Workshop on Perinatal and
Paediatric Imaging: PaPI, pages 9–16, 2012.

[13] M. Fogtmann, S. Seshamani, C. Kroenke, X. Cheng, T. Chapman, J. Wilm, F. Rousseau,
and C. Studholme. A unified approach to diffusion direction sensitive slice registration
and 3-d dti reconstruction from moving fetal brain anatomy. IEEE Transaction on
Medical Imaging, 33(2):272–289, 2014.

[14] B. Gabin. https://classes.soe.ucsc.edu/cmps160/spring13/projects/bgabin/final/
report/spherical harmonic lighting comparison.htm. 2013.

[15] J.L. Gauvain. Maximum a posteriori estimation for multivariate gaussian mixture obser-
vations of markov chains. IEEE Transaction on Speech and Audio Processing, 2(2):291–
298, 1994.

[16] A. Gholipour, J.A. Estroff, C.E. Barnewolt, R.L. Robertson, P.E. Grant, B. Gagoski,
S.K. Warfield, O. Afacan, S.A. Connolly, J.J. Neil, A. Wolfberg, and R.V. Mulkern. Fetal
mri: A technical update with educational aspirations. Concepts in Magnetic Resonance
Part A, 2015.

[17] A. Gholipour, J.A. Estroff, and S.K. Warfield. Robust super-resolution volume recon-
struction from slice acquisitions: application to fetal brain mri. IEEE Transactions on
Medical Imaging, 29(10):1739–1758, 2010.

[18] G. Gong, Y. He, L. Concha, C. Lebel, D.W. Gross, A.C. Evans, and C. Beaulieu. Map-
ping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion
tensor imaging tractography. Cerabral Cortex Match, 19:524–536, 2009.

[19] H. Greenspan, S. Peled, G. Oz, and N. Kiryati. Mri inter-slice reconstruction using
super-resolution. MICCAI, 26(1):S205–23, 2001.

[20] E.M. Haacke, R.W. Brown, M.R. Thompson, and R. Venkatesan. Magnetic Resonance
Imaging: Physical Principles and Sequence Design. John Wiley & Sons, Inc., 1999.

[21] P. Hagmann, L. Jonasson, P. Maeder, J.-P. Thiran, V.J. Wedeen, and R. Meuli. Un-
derstanding diffusion mr imaging techniques: From scalar diffusion-weighted imaging to
diffusion tensor imaging and beyond. Radiographics, 26(1):S205–23, 2006.

[22] P. Hagmann, M. Kurant, X. Gigandet, P. Thiran, V.J. Wedeen, R. Meuli, and J.-P.
Thiran. Mapping human whole-brain structural networks with diffusion MRI. PLoS
ONE, 2(7):e597, 2007.



www.manaraa.com

53

[23] H. Huang, R. Xue, J. Zhang, T. Ren, L.J. Richards, P. Yarowsky, M.I. Miller, and
S. Mori. Anatomical characterization of human fetal brain development with diffusion
tensor magnetic resonance imaging. J. Neurosci, 29(13):4263–4273, 2009.

[24] P.S. Huppi and J. Dubois. Diffusion tensor imaging of brain development. Seminars in
Fetal and Neonatal Medicine, 11:489–497, 2006.

[25] M. Irani and S. Peleg. Super resolution from image sequences. ICPR, 2:115–120, 1990.

[26] Y. Iturria-Medina, R.C. Sotero, E.J. Canales-Rodŕıguez, Y. Alemán-Gómez, and
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